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Abstract
In the present study an attempt is made to provide empirical and deterministic modelling approach for deriving flood fre-
quency curve in ungauged Keseke river catchment, South Nation Nationality and People (SNNP)-Ethiopia. The research 
work consists of (i) extracting of remote sensing data; (ii) evaluation and validation of remote sensing data; (iii) modelling 
of river flow using remote sensing data (climate and physiographic data) of the river catchment; (ii) three types of hydro-
logical models validation and evaluation; (iv) developing of flood frequency model for each sub-catchment. The evaluation 
and validation of remote sensing data and river flow prediction is carried out on eight selected rivers in Keseke River catch-
ment. The single gamma distribution quantile mapping is a good approximation to adjust satellite precipitation product data 
and the Pearson correlation function has shown a good correlation, mainly on heavy rain events. Results reveals that the 
SCS-CN and ANN approaches are suitable to predict river runoff in ungauged with reasonable accuracy in the investigated 
sub-catchments, and appears acceptable correlation between estimated and corrected satellite rainfall. A field campaign to 
obtain possible data was executed via interview and river cross section measures. The flood quantiles are compared with one 
time flow observation from field measured value (which is estimated from the river cross-section size) to identify the most 
representative hydrological model structure.

Keywords Ungauged catchment · SCS-CN · HEC-HMS · ANN · GIS · Remote sensing · Modelling · Keseke catchment.

Introduction

Daily river flow estimation in ungauged catchments and 
understating of the hydrological process has attracted inter-
est to many hydrologists and water resource modellers, but 
many challenges still remain (Gunter and Anderson 2005; 
He et al. 2011). Hydrology and water resources are a science 
closely related to local meteorology, hydro-climate, land 
use, digital elevation model, soil type, geomorphology, and 
highly depends on observation data (Zhao et al. 2012; Zhand 
et al. 2015). Adequate water availability is vital for sustain-
able development. Establishing up to date and timely infor-
mation on the adequacy of available water resources requires 
a comprehensive water resources assessment strategy 

(Beven 2001; Wale et al. 2009; Gibbs et al. 2012). So far, 
a limited number of catchments have sufficient hydrologic 
measurements required for comprehensive water resource 
assessments (Wale et al. 2009; Randrianasolo et al. 2011), 
while others do not have enough measurements. In addi-
tion, despite data scarcity in some catchments, the quality 
of this data, when available, remains questionable. Lack of 
sufficient data length, inadequate data, less quality or the use 
of questionable quality results in hydrologic units that are 
in this study referred to as ungauged (Sivapalan et al. 2003; 
Patil and Stieglitz 2012; Hrachowitz et al. 2013). The use 
of distributed physical models for water resources or hydro-
logic assessments in such ungauged catchments is therefore 
not possible due to lack of input data. Moreover, attempts at 
improving some traditional hydrologic tools (for example, 
the unit hydrograph and flow duration curves) for ungauged 
catchments has been led to unnecessary sophistication of 
these approaches (Sivapalan et al. 2003). The quest to pre-
dict surface runoff in such catchments therefore remains at 
the centre of hydro-informatics and water resources planning 
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and management (Randrianasolo et al. 2011; Schaefli et al. 
2011).

It has been reported by many researcher that hydrological 
models are mainly depending on the input data, hydroligcal 
parameter and structure of the model (Meresa et al. 2016; 
Meresa et al. 2017; Meresa and Gatachew 2018). Particular-
lly, studies on river modelling in ungauged catchment using 
the climate and physiographic characteristics are possible 
only if detailed information about topography, land use, 
soil, vegetation, and climate are depends on available data 
(Gunter Bloschl 2005; Wale et al. 2009; Adib et al. 2010; 
He et al. 2011). Runoff response estimation from ungauged 
river catchments is currently a topical issue in hydrology 
and water resources management (Gunter Bloschl 2005; 
Wale et al. 2009; Adib et al. 2010; He et al. 2011) and in 
developing coutries for hydraulic infrastuructre construction. 
However, spatial and temporal datasets of observed precipi-
tation, temperature, soil moisture, runoff are unavailable for 
catchments, which is very commen in semi-arid and arid 
environments of the developing countries.

There are alot of methods that are solving the problems 
of ungauged catchment. Particularly, extrapolating response 
information from gauged to unagauged catchments, remote 
sensing data, global hydrological models, unit hydrographs, 
coupled meteorological and hydrologic models, regionaliza-
tion of model parameters and multiple regression (Yadav 
et al. 2007; Moretti and Montanari 2008; Wale et al. 2009; 
Adib et al. 2010; Srinivasan et al. 2010). However, due to 
heterogeneity characteristics of catchments and nonstation-
arity of hydrological and meteorlogical charactersitcs, it is 
impossible to use regionalization, hydrological parameter 
transferring and multiple regression techniques for most of 
Ethiopian catchments (Meresa and Gatachew 2018). But, 
with the advances of remote sensing techniques, hydrologi-
cal and climate relevant information in ungauged river catch-
ments can be derived from various sensors and it would be 
important to understand the river runoff behaviour in spe-
cific watershed and the interactions among climate and phys-
icographic behaviour (Yadav et al. 2007; Meresa et al. 2016; 
Meresa and Gatachew 2018). A major problem facing the 
user of these data (precipitation, temperature, soil moisture, 
and normalized difference vegetation index) is how to effec-
tively incorporate and ready made remotely sensed data into 
hydrological models andstudies (Gumindoga et al. 2015).

Remote sensing datasets provides large spatio-temporal 
coverage of hydrological and meteorological variables 
(Hengl et al. 2007; Maathuis 2007). The availability of 
relatively high resolution climate (precipitation, tempera-
ture) and hydrological variables (soil moisture, NDVI) 
together with hydroligcal and Geographical Information 
System (GIS) makes it possible for gauged and ungauged 
catchments rainfall-runoff modelling in time and space 
(Sreenivasulu and Bhaskar 2010). Exploiting the capabilities 

and applicability of remote sensing datasets is the most suit-
able alternative option given the scarcity and/or ungauged of 
observed meteorological and hydrologic networks in Keseke 
river catchment. Remote sensing, hydrological modeland 
GIS techniques can therefore be useful in observing critical 
river catchment characteristics required for model parame-
ters estimation that capture crucial atmospher-land dynamics 
(Gumindoga et al. 2011; Dube et al. 2014).

Nowadays, there are several studies performed the rainfall 
and runoff process simulation using empirical, data deriven, 
hydrological model and statistical models comparisons. 
Meresa and Gatachew (2018) compared three conceptual 
hydrological models for climate change impact study, and 
found that accuracy of the modelled flow is mainly depends 
on the model structure and number of model paramters. Yag-
houbi and Massah (2014) compared three models of HBV, 
IHACRES and HEC-HMS in Azam Harat river catchment in 
Iran. Among these models HVB model performed better in 
proved resinable river flow in mean and variabilitywhereas 
HEC-HMS exhibited worst perfomence in root mean squere 
value. Asati and Rathore (2012) developed an autoregressive 
model, ANN and MLR for a complex catchment behaviour 
which is non-linear relationship between rainfall and run-
off, which is compared without incorporating the nature of 
process. Dastorani et al. (2009) compared artificial neural 
network with various data driven models for rebuilding 
the observedflow data and they concluded the ANN were 
dominantin comparison to other models (the normal ratio 
and correlation methods). In general, it seems HEC-HMS, 
SCS-CN and ANN are the most widely applied to predict 
runoff in river catchments. That is why in this research 
work, the comparison was done using these three empirical 
and deterministic hydrological models. Due to the reason 
that there are no previous studies in Keseke river ungauged 
catchments that are focused on water balance, run-off predic-
tion, water quality, pollution and urban drainage issues. This 
research work provides innovative research approach and 
robust solutions in runoff estimation in ungauged catchment. 
The reason is that hydrological (not available-ungauged) and 
meteorological observation networks in the Keseke river 
catchment are not dense and reliable. Furthermore, the few 
available meteorological data often present significant gaps. 
This makes the research work very innovative and original in 
terms of study area, methodology and framework approach.

Generally, river runoff models are designed to to gain 
a better understanding of the hydrologic characterstics of 
a catchment and to generatea synthetic hydrologic data 
for river flow facility design like flood protection, water 
resources planning, mitigation of contamination, or for 
flood earlywarning and forecasting. Specifically, the objec-
tive of this study is therefore to (i) evaluate and validate 
remote sensing data, (ii) estimate runoff in each sub-catch-
ment through the integration of GIS and remote sensing 
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techniques, (iii) compare empirical and deterministic hydro-
logical models for runoff prediction (HEC-HMS, ANN and 
SCS-CN), (iv) spatial–temporal characterizing of hydro cli-
mate data, and (v) develop flood frequency curve model for 
each sub-catchments.

Description of study area and datasets

The Keseke catchment is located in Southern Nations 
Nationalities and Peoples (SNNP) regional state. The geo-
graphic coordinates for the river catchment are 597,223.4 
mN/233,905.1 mE in UTM at head and 518,376.3mN and 
214,956.1 mE in UTM at tail. The total area of the catch-
ment is 1698 km2. The elevation of the catchment varies 
from 543 m in the south part to 2147 m in the northern part 
of the study area (Fig. 1). The rainfall distribution pattern 
of the catchment is uneven with dual seasonal period and 
has duranial intense rainfall. Collecting of daily time series 
of precipitation and temperature from 1981 to 2017 from 
Ethiopian Meteorological Agency was carried out. Dimike 
meteorological station was used as the core station to cor-
rect remote sensing climate data in the Keseke catchment 
area.

The predominant soils in the study area have similar 
hydrologic properties as given by the Hydrological Soil 
Group in Fig. 2b. Over 70% of the soils are in groups A and 
B indicating soils that are of a clayey nature or sandy but 
shallow and therefore tend to promote runoff rather than 
infiltration (Fig. 2b). The dominate soil characteristics of 
Keseke catchment area are chromic cambisols (77.61%), 

Eutric cambisols (2.34%), Eutric Fluvisols (15.88%), and 
Lithic Leptosoils (13.17%). Keseke river catchment is domi-
nantly covered by shrub land (58.16%) and Forest (21.11%), 
which shows that land cover significantly determines hydro-
logical characteristics of the catchment (Fig. 2a).

Table 1 shows the lists of the selected sub-catchments 
inside the main Keseke catchment. Among 12 locations, 
seven sites are situated exclusively, without being depend-
ent on other catchment flow. The other five selected 
locations are dependent to each other and located in the 
main stream of the river. Weremba, Durko and Pere sub-
catchments are the smallest locations, 23.22, 42.84 and 
48.20 km2 respectively.

Research methodology

Figure 3 shows a conceptual methodological framework that 
uses to fellow the overall research work steps. Starting from 
the two main input data types include rainfall and DEM, and 
then the other input data such as soil, land cover, land use, 
meteorological data are identified depending on the model 
approach. The main output from this model is river runoff at 
the outlet of the catchment for flood frequency cuvre model 
development.

Generally, there are three lines of methodological 
approaches that are clearly described in Fig. 3, river run-
off value was estimated for each sub-catchment in Keseke 
catchment based on soil type, land use, topographic, NDVI 
and climate data. The three research lines are: yellow col-
our is a line belonging to HEC-HMS modelling procedure 

Fig. 1  Location of the study area



 Modeling Earth Systems and Environment

1 3

(deterministic modelling), blue colour represents data driven 
modelling (ANN) and red colour stands for the empirical 
research procedure (SCS-CN). Thesemodelling approaches 
were developed at each sub catchment and compared with 
their mean value and 95% and 5% confidence interval.

Remote sensing data

We use remote sensing data as core source of data for this 
research work and runoff prediction at each sub-catchment. 
The main variables that are extracted from remote sensing 
data bases are: precipitation, temperature, soil moisture and 
Normalized Difference Vegetation Index (NDVI).

Climate data: Climate data were extracted from Cli-
mate Hazards Group Infra-Red Precipitation with Station 
data (CHIRPS) dataset. CHIRPS dataset is available glob-
ally and in 30 + year temporal length. This dataset covers a 
spanne of 50°S-50°N (and all longitudes) spatial coverage 
and starting in 1981 to near-present temporal length. The 
grid resolution of CHIRPS dataset is around 0.05° resolution 
scaleUptodate, many reserchs proved and recommended that 
the dataset has significant role for different research pur-
poses (e.g. hydrological modelling, trend analysis and sea-
sonal drought monitoring). The version 2.0 of CHIRPS is 
complete and freely available to the public (http://chg.geog.
ucsb.edu/data/chirp s/).

Fig. 2  Physiographic and location map of selected sub-catchments inside the Keseke River catchment a land cover map of Keseke catchment, 
and b soil type distribution of Keseke catchment, and c selected sub-catchments

Table 1  selected sub-
catchments

Sub-catchment Outlet X_utm (m) Y_utm (m) Area  (km2)

1 Welo @Wele 227,610 577,122 194.04
2 Keseke1 Near Kubilala 228,589 560,923 602.81
3 Weremba @Weremba 227,828 569,984 23.22
4 Kelar @Kelar 218,885 533,222 243.21
5 Pere @Pere 226,517 556,241 48.2
6 Kubilala @Kubilala 229,047 561,031 153.29
7 Keseke2 Near Mulmule 225,129 550,917 932.45
8 Mulmule @Mulmule 225,203 552,893 58.75
9 Durko @Durko 221,586 540,658 42.84
10 Keseke3 Near Durko 221,767 540,733 1119.17
11 Keseke4 Near Bridge 229,613 568,138 1446.9
12 Keseke5 @Keseke 201,160 523,513 1683.81

http://chg.geog.ucsb.edu/data/chirps/
http://chg.geog.ucsb.edu/data/chirps/
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In this research work, we use CHIRPS climate dataset 
for river run-off prediction in ungauged Keseke catchment. 
CHIRPS product is selected because of relatively high 
spatila-temporal resolutions, the availability of long time 
series upto 2017, and free access to the dataset. Before we 
applied the output of CHIRPS climate dataset to our study 
area, we have done a lot of post-processing data bias cor-
rection, evaluation and validations. As, one of the objectives 
of this research work, the dataset is evaluated and validated 
its application and presented how CHIRPS can be used to 
quantify the river flow in ungauged river catchment in South 
Ethiopia.

Soil moisture data: European Space Agency (ESA) has 
been released a new long-term and global grided dataset 
of soil moisture measurements time series from space by 
to help scientistis better understand the climate and water 
cycle, monitor agriculture activities and manage our water 
resources, and it is freely available at http://www.esa-soilm 
oistu re-cci.org/. In this study, the daily soil moisture time 
series data extractedfrom level-3 (version 4) product with a 
spatial resolution of 36 km which is generated on Grid 2.0, is 
used in this paper. This dataset should evaluate and validate 
with respect to the observed/measured surface soil moisture 
values. However, do to lack of observed value, we have done 
only 1 day validation of the soil moisture time series.

Soil moisture plays a decisive role in soil hydrology, 
regulating the surface and sub-surface flow including 
interflow, infiltration and percolation capacity of the 

area. That is why soil moisture variable is selected in this 
research work. specially, soil moisture is a control variable 
in exchange of water and energy between theatmosphere 
and the land.

Normalized Difference Vegetation Index (NDVI) 
data: The scientistics in National Oceanic and Atmos-
pheric Administration (NOAA) and Climate Data Records 
(CDR) provide historical hydroligcal and climate informa-
tion using data from satellites. This dataset contains daily 
Normalized Difference Vegetation Index (NDVI) derived 
from earth surface reflectance temporal data acquired by 
the Advanced Very High Resolution Radiometer (AVHRR) 
sensor. This temporal long-term record spans from 1981 to 
2017 and utilizes AVHRR data from NOAA polar orbiting 
satellites. NDVI has been prepared using the values of chan-
nel 1 and 2 of NOAA AVHRR and TERRA MODIS sensor. 
This NDVI spatial and temporal data time serious provides 
vital information on global change and resource manage-
ment. Also, it is very important to understand the historical 
NDVI change and vegetation moniterign around the globe 
for land surfaces. The NDVI dataset is organized with 1 km 
spatial resolution globally and monthly temporal resolution 
time scale and every one can access from https ://modis .gsfc.
nasa.gov/data/datap rod/mod13 .php website.

Normalized Difference Vegetation Index (NDVI) was 
intended to understand the status of vegetation using 
remotely sensed satellite data applied. It represents the veg-
etation quantity and activity status. That is why NDVI is 
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Fig. 3  Methodological framework to estimate runoff value in ungauged catchment. Three river flow prediction techniques: (i) Red: empirical 
(SCS-CN), (ii) Yellow: hydrological model (HEC-HMS), and (iii) Blue: data driven committee model (ANN)

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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selected as input to our ANN model together with climate 
and soil moisture data.

Satellite data correction: distribution based 
quantile mapping

Distributed Quantile mapping (DQM) equates observed 
cumulative distribution functions (CDFs) Fo, h and mod-
elled cumulative distribution functions (CDFs) Fm, h, in a 
historical period(in this study from 1981 to 2017) which is 
denoted by the subscript h. DQM transfer function repre-
sents as fellows:

for bias correction of xm, p(t), a modeled value at time t 
within some the other station period, denoted by the sub-
script p. If inverse CDFs and CDFs (i.e., quantile functions) 
are estimated in single semi empirically from the data, the 
mathematical formula can be illustrated with the aid of a 
Q-Q (quantile–quantile) plot, which is a direct scatter plot 
between quantiles emerically estimated from observed and 
modelled data. In this case, DQM amounts to a lookup table 
whose entries are found by interpolating between points in 
the quantile–quantile plot of the historical data. The transfer 
function is mainly constructed using information from the 
base station historical period exclusively; information pro-
vided by the other station is ignored.

DQM, like all climatatological and hydrological statisti-
cal post processing algorithms, relies highly on an assump-
tion that the satellite climate data biases to be corrected 
are stationary (i.e., the characteristics in the historical time 
period will persist into the other station). As it is beyond 
the scope of this paper to tackle this assumption, we instead 
direct to studies by Maraun et al. (2010) and Maraun (2012) 
for more insight.

Empirical runoff calculations

The empirical approach for estimation of river runoff in 
ungauged catchment is one of the most popular approach 
in hydrology. However, in this research work, we develop 
SCS-CN approach a bit different from the previous and con-
ventional way of runoff estimation. Basically, we develop a 
novel approach using the physiographic and climate charac-
teristics to estimate runoff.

Hydrologica Soil Group (HSG) classification: As per 
National Engineering Handbook developed by USDA, 
soils are classified into four main groups A, B, C and D 
based upon their infiltration rate, capacity and and other 
characteristics. Group A: Soils in this group have low 
river runoff potential and high infiltration capacity and 
rate when thoroughly wet. River water is transmitted with 

(1)x̄m,p(t) = F−1
o,h

{

Fm,h

[

xm,p(t)
]}

high rate through the soil; Group B: Soils in this group 
have moderately low river runoff potential and moderate 
infiltration capacity and rate when thoroughly wet. River 
water transmission with moderate rate through the soil; 
Group C: Soils specifically in this group have moderately 
high river runoff potential and low infiltration capacity 
and rate, when thoroughly wet. River water transmission 
is somewhat limited through the soil; Group C: Soils in 
this group have high river runoff potential and very low 
infiltration capacity and rate, when thoroughly wet. River 
water transmission is limited through the soil.

Antecedent Moisture Condition (AMC): AMC indi-
cates the moisture content of soil layer at the beginning of 
the rainfall droplets. AMC highly correlated with the curve 
number of the area, and accounts for the variation in curve 
number under consideration from time to time. There are 
three levels of AMC were dominated and goverged by 
rainfall characterstics of the study area. The AMC I is 
related to CNI, AMCII with CNII and AMCIII with CNIII 
(Table 2). The classification of these three AMC classes 
are based on the characterstics of rainfall magnitude of 
previous cumulative 3 days and season (dominant season). 
AMC threshold is identified based on the local three class 
of rainfall for determination of curve number (Table 2).

SCS Curve Number Method: Soil Conservation 
Model is distributed catchment modeling and based on the 
AMC and HSG. It is widely used in hydrological model-
ling application. This approach computes direct river run-
off through an empirical forumulation that requires the 
rainfall and a watershed characterstics as inputs (Nayak 
and Jaiswal 2003). The first concept is that the ratio of 
actual amount of runoff to maximum potential runoff is 
equal to the ratio of actual infiltration to the potential 
maximum retention. This proportionality concept of SCS 
curve number method is expressed as

where, P = precipitation in millimeters (P > = Q); Q = runoff 
in millimeters; S = potential maximum retention in millime-
tres; Ia = Initial Abstraction.

(2)

(

P − Ia − Q
)

S
=

Q
(

P − Ia
) ,

Table 2  AMC for determination of CN value

CN AMC Total rain in previous 3 days
Dominant seasons

I I Less than 13 mm
II II 13 to 21 mm
III III More than 21 mm
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The SCS-CN method defined the value of the initial 
abstraction I to be approximately equal to 20% of the water-
shed storage S by means of rainfall and runoff data from 
experimental small watersheds, I = 0.2S.

Solving Eqs. 1 and 2 simultaneously,

which is the rainfall-runoff relation used to compute direct 
daily runoff from storm rainfall in the SCS method. The 
catchment storage, S, and the curve number CN are related 
by,

The parameter curve number (CN), having a range of val-
ues between 0 and 100.. In this method, a CN is assigned to 
each sub-cathcment based on land use, soil type and treat-
ment, and AMC.

Area weighted composite CN for various conditions of 
hydrologic soil and land use conditions are computed as 
follows:

where A1, A2, A3, …, An represent areas of polygon having 
CN values CN1, CN2, CN3, …, CNn respectively and A is 
the total area.

Weighted curve number (AMC II) and also curve num-
ber (AMC I) and curve number (AMC III) were determined 
using the following equations respectively:

Hydrological model for flow prediction: HEC‑HMS

HEC-HMS is a hydrologic modele package developed by 
the United State Army Corps of Engineers-Hydrologic 
Engineering Centre (HEC). It is a semi-physically based 
and conceptual semi-distributed model designed to simu-
late continous and event based rainfall-runoff processes 
in a wide spatial scale range, from large river basin flood 
hydrology to small urban and natural catchment runoff. 
The software package includes runoff transform, losses, 
channel routing, base flow, canopy, surface, rainfall-runoff 
simulation and parameter estimation. HEC-HMS hydro-
logical model uses different pachages to represent each 
component of the river runoff process, including models 
that compute runoff volume, models of base flow, and 

(3)Q =
(P − 0.2S)2

(P + 0.8S)
where (P >= 0.2S),

(4)S = 25400∕CN − 254.

CN =
CN1 ∗ A1 + CN2 ∗ A2 + CN3 ∗ A3⋯CNn ∗ An

A1 + A2 + A3 +⋯An

CN for AMC I is calculated as ∶ CNI

= CNII∕(2.281 − 0.01281 ∗ CNII)

CN for AMC III as ∶ CNIII = CNII∕(0.427 − 0.00573 ∗ CNII)

models of direct runoff. Each model run combines a mete-
orological model, basin modeland control specifications 
with run options to obtain results (Choudhari et al. 2014).

The hydrological modelling applied in this study is per-
formed to predict continuous runoff on daily time step. The 
HEC-HMS hydrological model is process based physical 
model with parameters to be estimated directly from field 
data and remote sensing data. In ungauged catchment, the 
model parameters are calculated from the existing climatic 
and physiographic characteristics of the catchment. The 
model were implemented on the eleven reference catchments 
with two input data (daily precipitation and daily potential 
evapotranspiration) and calibrated against field data of flow.

Data driven model: artificial neural network model

There have been various studies regarding the applications 
of Artificial Neural Networks (ANN) in hydrology (Saliha 
et al. 2011; Kalteh 2013; Sabouri et al. 2013). The major 
advantages of ANN include their capability of modeling 
nonlinear relationships, providing flexibility and robustness 
in structure, and the ease of implementation. ANN models 
take into consideration both temporal changes in hydrologic 
and climatic conditions and the spatial variation of the catch-
ment; therefore, they have gained popularity in flow estima-
tion (Besaw et al. 2010; Maier et al. 2010). In many cases, 
ANN has outperformed other methods for prediction of 
flood flow, peak flow (Demirel 2009) and volume of surface 
runoff (Mondal et al. 2012). Besaw et al. (2010) concluded 
that an ANN trained at one basin is capable of accurately 
estimating the stream flow at a nearby basin.

Three major components of the ANN include, model 
structure (parameters and architecture), input data, and 
output data layers. Previous studies addressed the structure 
of ANN associated with model parameters through the 
alteration of datasets, which is governed by the input, hid-
den and output combination neurons. This involves train-
ing the network a number of times while varying initial 
weights and bias values. Similarly, the model architecture 
(type of ANN model, training time) is selected based on 
a trial and error approach, which optimizes the model. A 
key challenge for reliable adoption of ANN is embedded in 
the need to determine which input parameters significantly 
influence predictions. The sensitivity of these inputs for 
flow prediction is equally as important. Output uncertainty 
is typically addressed through prediction intervals (Sriv-
astav et al. 2007; Solomatine and Shrestha 2009; Talebi-
zadeh et al. 2010; Khosravi et al. 2011).

The Artificial Neural Network is generally used for 
modelling non-linear input–output relationship such 
as time series prediction of rainfall to runoff. The main 
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objective of this ANN study is to predict the runoff from 
remote sensing data collected from 1981 to 2017.

In this study, based on the average mutual information 
analysis we selected temperature, soil moisture, normalized 
difference vegetation index and precipitation as input to 
ANN structure. Using these four input variables, we create 
100 non-linear architecture to simulate river runoff at each 
sub-catchment. However, it does not mean that all the simu-
lations are correct or exact values. Therefore, from the 100 
simulations we estimate the average values which is the best 
representative river flow at specific site.

Flood magnitude and frequency

Flood frequency analysis is a statistical technique used by 
engineering hydrologiststo predict flow values (magnitude 
and frequency) corresponding to specific return periods or 
probabilities along a river. Statistical analysis in flow data is 
used to extract information such as mean, standard deviation, 
kurtosis, skewness, and recurrence intervals, which plays 
role in understanding the river flow character. These statisti-
cal values are then used to construct frequency distributions, 
which are curve graphs and tables that tell the likelihood 
of various river flows as a function of recurrence interval. 
Flood frequency analysis was employed for all selected sites 
in Keseke river catchment. These analyses deployed using 
annual daily maximum flow for the entire period from 1981 
up to 2017 (at least 37 years of flow were considered), were 
conducted for selected eleven sites inside the Keseke river 
catchment.

After extracting of annual maximum flow data series, we 
select a best distribution from more 20 candidate distribution 
fitting and three parameter distributions. Such procedures 
are the most common application of the extreme values 
theory (Coles 2001).

Result and discussion

In this section we describe the results obtained from rainfall-
runoff modelling using SCS-CN model, HEC-HMS model 
and ANN model; evaluation and validation of remote sens-
ing data; spatial–temporal variability of hydro-climatic con-
ditions; and flood frequency curve model development.

Remote sensing data evaluation

The climate satellite data is an important tool for the assess-
ment of rianl, temperature characterstics of the catchment. 
The time scale of remote sensing data has similar time reso-
lution with ground station which measures daily time scale 
values of precipitation depths, average daily temperature; 

the remote sensing data adjusted time series can be applied 
to determine historical flood events on the study catchment.

Rain gauge stations from the Keseke river catchment were 
used to correct the bias and non-uniform characterstics in 
the remote sensing rainfall data, which has a temporal time 
scale of 24 h, and corrected using a distribution quantile 
mapping technique. The time period of the rain gauge sta-
tion used to correct the remote sensing product time series 
was from January of 1981 to December of 2017. The remote 
sensing product time series was obtained for the study area 
of interest using a Matlab platform script, which extracted 
the climate and hydrological daily values of a pixel.

The correction of the remote sensing data was performed 
in daily and monthly basis, this would help to understand the 
seasonal characterstics climate variables in the bias correc-
tion process. This technique showed that the remote sansing 
data biases were reduced significantly and the conscutiver rain 
spell and the intense rain events were well adjusted (Fig. 4a, 
b). The results also showed restrictions because it tends to 
accurate adjust the light rain events. Moreover, the Pearson 
correlation between corrected and observed values has shown 
a good correlation, specially, on intense rain events (Fig. 4b). 
The monthly bias correction shewed best agreement with the 
observed values due to inclusion of seasonal characterstics 
in the cbias correction process has the best adjustment of the 
approach; this is due to the inclusion of the seasonality in the 
correction process. The number of wet days, intense rianfall 
and light rain events are propoerly considered and adjusted.

Figure 4a, b show the comparison of the mean and maxi-
mum rain gauge station and the corrected satellite data. The 
correction of the satellite product correlates well to observed 
data including the values of the high quantiles that represent 
the high rain events (Fig. 4b). To compare the correction, 
the scatter plot was prepared between the observed data and 
the uncorrected satellite product and between the observed 
data and the corrected satellite values. The scatter plot of 
corrected and observed rainfall shows more straight (one to 
one relation) that concentrates in the diagonal line. Whereas, 
the scatter plot before correction is cloudier and not clearly 
show one to one relation. The change in correlation in this 
scatter plot shows a better fit to observed data with the cor-
rected satellite data (Fig. 4b).

The rainfall satellite data is an important tool for the 
assessment of spatial and temporal precipitation distribution. 
As Fig. 5 shows the average annual maximum rainfall ranges 
from over 120 mm/year in the northern and western part 
of the catchment to less than 61 mm/year in the south part 
of the river catchment. Similarly, the annual mean rainfall 
shows similar pattern and variability with annual maximum 
rainfall in the Keseke catchment. Interestingly, the distribu-
tions of annual maximum and annual mean value of precipi-
tation are more all less similar.
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Comparison of estimated runoff

The comparison of three approaches of river flow model-
ling was performed. HEC-HMS, ANN and SCS-CN meth-
ods were developed to estimated runoff in ungauged Keseke 
river catchment. Keseke river catchment is ungauged and 
highly heterogeneity catchment. In this way, it is impossi-
ble to calibrate the hydrological models because there is no 
observed flow in the catchment and it is also not feasible 
to use parameter regionalization and parameter transferring 
approach due to heterogeneity and non-stationarity of the 
catchment. Therefore, in this research paper, in order to eval-
uate the skill of these three runoff estimation techniques, we 
developed two way of rainfall-runoff models could validate 
and compare these three modelling approaches: (i) using 
field data, and (ii) using the median of confidence intervals 
(95% and 5% of the estimated runoff ensembles).

Figure 6 shows the mean and dispersion of the absolute 
value of the bias scores for each of the watersheds in the 
study. The box graphs are interpreted as follows. The high-
lighted bar extends from the 25th percentile to the 75th 
percentile, with the median shown as a horizontal line. 
Figure 6 indicates that the bias with respect to mean flow 
and spatial model performance and bias in the selected sub 
catchments. Clearly seen that the models were performed 
slightly different in spatially and flow regimes. More all 

less, the median (50%)values are almost comparable with 
small difference; which is appear equally located around 
+ 10% and − 10% bias. whereas, the 75% and upper quar-
tile values has shown large difference. The median of 
all models are appear equally located around + 10% and 
− 10% bias except Weramba sub catchment. Whereas, the 
bias variability estimated higher using HEC-HMS model 
in all selected sub-catchments. ANN and SCS-CN displays 
similar variability but different in median value. SCS-CN 
is performes better than the other two hydrological models 
interms of variability and median value as shown in Fig. 6. 
This is because SCS-CN method considered both climatic 
and physiographic characteristics of the catchment. While 
the others miss the integration and surface processes. There 
is a somewhat variable upper tail of the distribution, which 
is especially visible in the smaller watersheds. Another 
conclusion from reviewing the graph is the median percent 
bias exhibits more variability than the width of the 25/75 
percentile box.

Thus, the above discussions on evaluation criteria and 
plots of estimated data could not provide explicit perfor-
mances on different intervals of values. To address this 
problem, different ranges of flow (from very high to very 
low flow) were determined. The reproduction of the stream-
flow was analysed by the flow duration curve of selected 
river sub catchment for the 1981–2017 period (Fig. 7). The 

Fig. 5  Spatial mean (left) and 
maximum (right) rainfall distri-
bution in Keseke catchment
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exceedance probability of selected river flow shows that the 
SCS-CN and ANN performed generally better in the very 
high flow segment and ANN was better in the very low flow 
segment. The values obtained by HEC-HMS, SCS-CN and 
ANN has similar temporal pattern and lies in the 95% and 
5% confidence interval. Interestingly noted that ANN is 
performed well in the hydrological low flow characteristics 
and SCS-CN for high flow characteristics, were graphically 
similar for the rest of the flow segments in Keseke river 
catchment. The result consolidates the result obtained in the 
bias analysis (Fig. 7).

The formulation confirms that remote sensing database 
can be used to solve water resource and hydrology problems, 
and important to asses daily and/or time based runoff model-
ling, and that the selected models calibrates itself. On the 
daily scale, the performance of this remote sesnsing-based 
approach rivals that of more conceptual and complex, and 
data-intensive hydrological models are important and fea-
sible. The application of a grid-based approach, integrat-
ing different sources of open-access remote sensing data to 
evaluate the river flow hydrology and water resource mod-
elling, is rather unique. Many models such as HEC-HMS, 
ANN and SCS-CN can ingest remote sensing products while 
performing calculations on a different catchmentscale. In 
comparison to varioues hydrology models, the modelling 
apreaoch applied here is slightly restricted to monthly and 
yearly temporal resolutions. For flood frequency applica-
tions, daily time steps are highly required, and the applied 
methods of advanced hydrological models provide robusta 
and substantial added value.

River flow simulation and evaluations

This section presented the simulated flow characteristics 
including correlation between precipitation and estimated 
runoff and temporal–spatial variability of estimated flow.

Simulated flow characteristics

The correlations between estimated runoff and correlated 
satellite rainfall for the selected river sub catchments were 
developed. The Pearson correlation matrix presented in 
Fig. 8 is the result of the inter and extra correlation among 
the sub-catchments. For the study catchment, the correlation 
between runoff and rainfall are found excellent and highly 
variable for all the selected sub catchment. The inter correla-
tion (correlation of rainfall and runoff from the same site) is 
highly correlated each other. Whereas, the extra correlation 
(correlation between one another sites) are showed poor and 
highly variable except two sites (Kubilala and Pere). That 
means the catchment has heterogeneous and non uniform 
characteristics. This implies a warranty to hydrologist and 
water resource modelers that it is not possible to consider 
regionalization, regression and parameter transferring tech-
niques for such catchment to model the river flow.

Correlations between runoff and precipitation are 
expected to be strong at the same site in comparison to extra 
correlation. In spatial rainfall characteristics of the catch-
ment, the maximum and mean distribution is uneven and 
higher values were seen in the upper part of the river. Simi-
larly, during our interview company, we proved that the river 
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flow mechanism derived mainly by rainfall and expected to 
get strong correlation as we shown in Fig. 8. Hence, rain 
contributes to the runoff at the outlet in a relatively shorter 
time period. However, sometimes intense rainstorms found 
in this catchment at the beginning of the rain season typi-
cally produced runoff immediately after a large storm.

Figure 9 shows graphical visualization of the annual 
maximum (upper panel of Fig. 9) and mean (upper panel of 
Fig. 9) estimate runoff time series for the selected ten sta-
tions. The highest maximam annual runoff was estimated 
in Keseke1 and Keseke 2 sites (77.3 m3/s) and the lowest 
was estimated in Welo 4 site (8.9 m3/s) according to the 
analysis of the present datasets (1981–2017). Similary, the 
annual mean values is also shows temporal variability ranges 
from 0.2 to 0.9 m3/s. Generally, the annual maximum and 
mean runoff series are positively increased for all the ten sta-
tions and shows significant differences among the selected 
sub catchments. The temporal status of each sub catchment 
shows a positive trend and consistent inside the Keseke 
catchment. Also, possible to determine the coefficient of 
surface runoff from surface runoff value and rainfall data. 

So, it is mean that all sub catchment shows reliable surface 
runoff values and the estimated values important and appli-
cable for design purpose in ungauged catchment.

Figure 10 shows the spatial variability of annual max-
imum and annual mean surface runoff within all 15 sub-
catchments as annual averages over the 37-year period 
(1981–2017). In general, the spatial patterns and variabil-
ity’s within the entire catchment are different. This is due 
to a combination of the main key factors, such as vegetation 
cover, slope and rainfall intensity, affects the spatial forma-
tion of surface runoff and, thus, the other flow components. 
Specially, a slight higher annual maximum surface runoff 
can be observed: in the mountainous and middle part of the 
Keseke catchment areas.

Figure 10 can be seen that different parts of Keseke river 
catchment exhibit different flow amount and variability at 
the same point in time. There is, in fact, a gradient in runoff 
regimes magnitudes across Keseke river catchment, with 
southern areas, especially lowland areas, experiencing low 
runoff flows, in opposition with the high flows exhibited in 
the north (mountainous) part of the catchment.
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Flood frequency analysis

Flood frequency analysis is a technique used by hydrolo-
gists to predict flow values corresponding to specific return 

periods or probabilities along a river. Flood frequency analy-
sis is used to calculate statistical information such as mean, 
standard deviation and skewness which is further used to 
create frequency distribution graphs. Flood frequency 

Fig. 8  The Pearson correlation between precipitation and estimated runoff of the selected sub catchments
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analysis was employed for all selected sites. These analy-
ses, using maximum daily flow for the entire period from 
1981 upto 2017 (at least 37 years of flow were considered), 
were conducted for selected ten sites inside the Keseke river 
catchment.

For each station, pairs of coefficient of skewness (Cs) and 
coefficient of kurtosis (Ck) have been computed and plotted 
on the Cs–Ck diagram for each station, called moment ration 
diagram (MRD). The location of the sample estimate with 
respect to the distributions gives an indication of the suit-
ability of the distribution to the data. However, if the sample 
size is small, the bias in the values of higher moments may 
be larger enough to give misleading results. In this study we 
have 37 years sample annual maximum flow, which is suit-
able to use moment ration diagram. Based on the smallest 
standard error of estimate, the best fitted candidate distri-
butions and optimal parameters of annual maximum flow 
for all stations are selected. Generally, Gamma, General-
ized perato, and birnbaumsaunder distributions are the most 
dominant distribution type with Maximum likely hood (ML) 
parameter estimation technique.

After choosing the probability distribution that best fits 
the annual maxima data and parameter estimation tech-
niques, flood frequency curves were developed (Fig. 11). 
These graphs are then used to estimate the design flow val-
ues corresponding to specific return periods which can be 
used for flood protection, structure design and hydrologic 
planning purposes. Flood frequency plays a vital role in 
providing estimates of recurrence of floods which is used 
in designing structures such as dams, bridges, culverts, 

levees, highways, sewage disposal plants, waterworks 
and industrial buildings. for instance one can read from 
the flood frequency curve as the flow value correspond-
ing to a 25-year return period event for the ten selected 
stations are approximately equal to 44.8, 39.2, 34.2, 37.9, 
33.7,33.7 m3/s respectively for Kela, Keseke1, Keseke2, 
Keseke3, Kaske4 and Mulmula.

Conclusions

Ungauged river understanding and modelling for water 
resource management and planning such as the Keseke 
River catchment in South Ome River basin, using empiri-
cal models, data driven models, hydrological models with 
GIS and remote sensing techniques can provide important 
information and analytical capability to hydrology and water 
resource assessment of the given river catchment. This study 
has confirmed the complementary framework approaches 
of remote sensing, various hydrological modelling tech-
niques and observed hydro-climate data to refine the catch-
ment process and balance of the Keseke river catchment. 
The methodology applied to a catchment where there is no 
hydrological gauged station with sparse meteorological sta-
tions, conclusions that the study may provide evidence and 
conformation for the utilization of remote sensing product 
data for hydrology and water resources assessment of the 
Keseke river catchment. The outputs of this study will help 
hydrologists to understand the efficiency and application of 
remote sensing data in river flow (rainfall-runoff) modeling.

Fig. 10  Spatial variability of 
annual maximum (left) and 
mean (right) surface runoff dis-
tribution in Keseke catchment



Modeling Earth Systems and Environment 

1 3

The aims of this study were to explore the potential of 
satellite based precipitation estimates for flood frequency 
analysis under three umbrellas at different sub-catchments 
in Keseke catchment. First, the study focused on statistical 
evaluation of the remote sensing data products and evaluated 
their utility in river runoff prediction using three different 
hydrological modelling approaches in ten tributaries of Kes-
eke catchment. Second, the three hydrological modelling 
approaches were evaluated and compared with respect to 
the mean and 95% and 5% confidence interval in ungauged 
Keseke river catchment. Third, based on the moment ratio 
diagram approach different distribution type and parameter 
estimation techniques were identified, and flood frequency 
analysis was performed using the 37 years flood series.

Validation of satellite-based climate product using rain 
gauges data within the time period from 1981 to 2017 in 
the selected ten sub catchments, Keseke river catchment, 
were performed. Both bias correction methods (Distribute 
Quantile Mapping and Emperical Quantile Mapping) sat-
isfactorily improved daily raw climate data in the Keseke 
river catchment. Some statistical parameters such as correla-
tion coefficient, bias and percent bias were used to evaluate 
the satellite data in comparison with the observed data. The 
results of the analysis show that the satellite data are rea-
sonably correlated with observed climate data and highly 
cross-correlated with the observed climate data. Moreover, 
the bias correction technique was able to capture the daily 
observed climate data quite well in both timing and magni-
tude in all selected sub catchments.

The bias correction techque achieved significantly 
improved the capability of these products to predict run-
off at a daily scale using ANN, HEC-HMS and SCS-CN. 
Improvements in hydrological predictions obtained by cor-
rected remote sensing data can help to enhance the opera-
tion of hydropower, reservoirs, flood protection, plan-
ning for irrigation, and hydraulic structures, among other 
things. The three models performed well in the selected 
sub-catchments in most cases. However, relatively, SCS-
CN and ANN performed better than HEC-HMS. Although 
the HEC-HMS model had higher relative peak flow errors 
and higher relative runoff errors than did ANN and SCS-
CN in many cases. SCS-CN based modelling had lower 
peak flow errors and better hydrographs agreement with 
the mean simulated flow in most selected sites. Gener-
ally, HEC-HMS did not show better performance than 
the other two models as expected due the parameters that 
are extracted from field, which leads dueto the concept of 
stationerity and heterogeneity of the selected catchments.

Available global remote sensing data products pre-
sent great opportunities to study extreme hydrology and 
water resource resource variability. We have confirmed 
that these products can be integrated with hydrological 
models to solve a typical water problems without the need 
for resource intensive and complex ancillary data. This 
research approach provides a rapid, accurate, reliable, and 
cost-effective solution to predict river runoff and assess 
hydrological characterstics in the selected sub catchments 
in unguaged or with out monitoring infrastructure, which 

Fig. 11  Flood frequency curve 
for the selected study sites
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is vital for water resource managers to make informed 
decisions on different sectorial activities (flood protection, 
water supply, irrigation…).
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