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Abstract

The objectives of this study across the highlands of Ethiopia were: (i) to characterize the
association between soil organic carbon (SOC) stocks and biophysical variables and (ii)
to model and map attainable SOC sequestration associated with five improved land man-
agement practices. The spatial distribution of the SOC stock was studied using a multiple
linear regression model driven by eight biophysical predictors. A widely used SOC model
(RothC) was then used to model changes in SOC over the next 20-50 years of improved
land management. Simulations were driven by the derived SOC stocks, pH and clay con-
tents that are available in the ISRIC soils database at 250 m resolution and climate data
from the “Enhancing National Climate Services Initiative” database. Organic carbon inputs
to the model were estimated from the “Improved Crop Varieties Yield Register” of the
Ministry of Agriculture and Livestock Resource and the Central Statistics Authority. After
50 years of conservation tillage with 80% of available manure applied to cultivated land,
the total SOC stock increased by 169,182,174 t, which is 2.8 times higher than the stock
increase with only 50% of available manure applied. Introduction of improved pasture spe-
cies and measures to control soil erosion was an important source of net carbon seques-
tration in grasslands. Afforestation and reforestation of degraded landscapes and protec-
tion of natural ecosystems further increased soil carbon. This highlights the importance of
improved land management practices to SOC sequestration, which in turn could enhance
agricultural productivity, food security and sustainable development.
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1 Introduction

The soil carbon (C) pool holds three times the amount of C stored in the atmosphere and
4 times that in the biotic pools (Lal, 2004). The soil serves as the link between C pools
in the atmosphere, biota and oceans, acting as either a sink or a source of carbon diox-
ide (CO,) and other greenhouse gases (World Bank, 2012). Therefore, since land-use
change is a major global source of CO,, methane (CH,) and nitrous oxide (N,O) emis-
sions (Xiao, 2015), small changes in this large pool can have significant effects on the
concentration of atmospheric CO, and hence climate change (Xiao, 2015; Lal, 2008).

Carbon sequestration in the soil requires the rate of accumulation of soil organic
carbon (SOC) to be increased through sustainable land management practices while
controlling practices that result in losses (Abera et al., 2020; Namirembe et al., 2020;
Fusaro et al., 2019; Ramesh et al., 2019; Adimassu et al., 2018; Blanco-Canqui et al.
2018; Bass et al., 2000). Three measures exist for SOC sequestration: potential, attain-
able and actual, as defined by a physiochemical maximum limit for storage of C in the
soil, the socioeconomic factors that limit the input of C to the soil system, and the cur-
rent land management practices that reduce SOC, respectively (World Bank, 2012).

Soil C sequestration depends on a number of soil-forming factors, including soil
physiochemical parameters, land use, management, climate, topography, agrocli-
matic zone and time (Begum et al., 2017; FAO, 2001; Wiesmeier et al., 2019). Soil C
increases significantly with increasing percentage soil clay (Follett et al., 2012) because
physical protection of organic matter by clays reduces the rate of decomposition (Xiao,
2015; Dalal & Chan, 2001). Soil pH controls the efficiency of decomposition of SOC by
microbial enzymes, with optimum decomposition observed at a pH of about 6.7 (Xiao,
2015; Dalal & Chan, 2001). Increasing soil moisture to field capacity increases annual
biomass production and net plant-derived C input to the soil, so potentially increasing
the rate of C sequestration (Cotrufo et al., 2011; Zhou et al., 2008). However, increased
soil moisture also increases microbial activity, so accelerating the rate of decomposi-
tion (Jobbagy & Jackson, 2000). Increased mean annual temperature can result in higher
plant biomass and so higher inputs of organic C to the soil (Xiao, 2015), but increased
soil temperature also facilitates faster microbial decomposition and greater loss of C
through respiration (Canadell et al., 2007; Follett et al., 2012). Altitude and agroclimatic
zone control the temperature and rainfall distribution in tropical highland regions, such
as in Ethiopia, which in turn impact vegetation and crop growth, land-use options and
human activities (IFPR & CSA, 2006), so determining attainable SOC sequestration.

A range of improved land management practices have been suggested to increase
attainable SOC sequestration in agricultural and natural ecosystems and consequently to
enhance soil health, food production and the resilience of ecosystem services to climate
change (Fig. la; Xiao, 2015; World Bank, 2012; Lal, 2011; Feller et al., 2001). Forest
and alpine vegetation ecosystems in the Ethiopian highlands contain more C stock per
unit area than any other land use (Abegaz et al., 2020). Therefore, protection of existing
natural forest, alpine vegetation, closed bush—shrub—woodlands and swamps (Fig. 1a) is
the least-cost and most recommended management option for conserving SOC stocks
(World Bank, 2012). Ethiopia has become a partner of the REDD + network, which aims
to conserve existing forest carbon stocks (MEFCC, 2018). Afforestation of barren lands
and reforestation of degraded forest and bush—shrub—woodlands provide further meth-
ods for achieving long-term sequestration of C (FAO, 2001). In 2019, with the “Green
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Fig.1 Land uses/land covers with their improved management options (a) and multiple benefits of con-
trolled soil erosion (b)

Legacy” initiative, Ethiopia has planted 4 billion seedlings (Abegaz et al., 2020), with
the program continuing in 2020 and planting a further 5 billion seedlings.

Different options for grassland management can be adopted to increase attainable SOC
sequestration (Fig. la). Controlled grazing could reduce land degradation, SOC deple-
tion and ammonia (NH;) emissions (World Bank, 2012). Introduction of more productive
and deep-rooted grass species could support the restoration of degraded vegetation and
increase above- and below-ground biomass production, which consequently can reintro-
duce large amounts of soil organic matter into the soil, resulting in C sequestration (FAO,
2017; World Bank, 2012).

Different cropland management practices could be used to enhance rates of SOC
sequestration (Fusaro et al., 2019; Namirembe et al., 2020). These include conservation
tillage (with incorporation of more than 30% of crop residues into the soil (World Bank,
2012)), application of manures and composts, use of crop rotations, adoption of improved
crop varieties and controlled soil erosion (Fig. 1a). A meta-analysis by Abera et al. (2020)
reported that implementation of conservation agriculture practices in Ethiopia showed
significant increases of SOC (24%) and agricultural productivity (18%) and a significant
decrease of soil erosion (45%). Application of animal manure to croplands is an age-old
practice that has been commonly used in the highlands of Ethiopia to increase or maintain
agricultural productivity. Use of organic manures as fertilizers has potential to maintain
crop yields, while also increasing C inputs to the soil and avoiding potential adverse envi-
ronmental impacts of chemical fertilizers (Lu et al., 2015; Reeve et al., 2012).

Finally, accelerated soil erosion due to misuse of agricultural land poses a serious chal-
lenge in both cultivated and grazing lands in the highlands of Ethiopia (Shiferaw et al.,
2013). Adoption of effective conservation measures to combat accelerated soil erosion
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could reverse soil degradation trends and increase attainable SOC sequestration (Adimassu
et al., 2018; Chen et al., 2020; Hishe et al., 2017). Adoption of these practices also has
multiple benefits to hydrological and nutrient cycling, soil quality, climate change mitiga-
tion and improved resilience of agricultural systems (Fig. 1b). Since the 1980s, a large-
scale initiative in soil and water conservation practices has been underway in the highlands
of Ethiopia (Engdawork & Bork, 2014; Kosmowski, 2018). Indigenous agricultural ter-
races are well-developed practices that are used in different parts of Ethiopia (Kosmowski,
2018; Gebreslassie 2014), and so these have been included in the package of the Sustain-
able Land Management Program of Ethiopia (Abera et al., 2021). A study by Wei et al.
(2016) reported that terraced plots were on average 11.5 times more effective at controlling
erosion than non-terraced plots, which in turn enhanced SOC sequestration. A study by
Chen et al. (2020) suggested that the increase in SOC sequestration attributable to terracing
was on average 32.4%.

Many previous studies in different areas of the Ethiopian highlands have focused on
changes in SOC associated with land-use change. Local changes have been measured by
Vagen et al. (2013), Chibsa and Ta’ (2009), Freier et al. (2009), Girmay et al. (2008),
Lemma et al. (2006), and Yimer et al. (2006). Regional scale losses were calculated by
Abegaz et al. (2020), and Niles et al. (2010). Long-term dynamics have been investigated
by Abegaz et al. (2016) and Abegaz and van Keulen (2009).

Most of modeling of SOC sequestration has been carried out at global scale, or in
Europe and the USA (e.g., Barancikova et al., 2010; Begum et al., 2017; Cagnarini et al.,
2019; FAO, 2019; Gomes et al., 2019; Gottschalk et al., 2012; Husniev et al., 2020; Liu
et al., 2011; Morais et al., 2019; Smith et al., 2005; Wang et al., 2016, 2017a). Applica-
tion of modeling at regional and national scales in Africa is missing, in part because the
spatial distribution of SOC is poorly defined and knowledge gaps remain in many regions
of Africa. Specifically, to date, there has been no agroclimatic or land-use-based modeling
and mapping of attainable SOC sequestration associated with improved land management
across the highlands of Ethiopia. Therefore, the objectives of this study were: (i) to char-
acterize the variation of SOC stocks as related to the variation of biophysical variables
and (ii) to model and map SOC sequestration attainable following 20 (2021-2041) and 50
(2021-2071) years of improved land management across the highlands of Ethiopia. The
results of this study will help to inform stakeholders in environmental and agricultural
development planning on how to enhance SOC sequestration, mitigate climate change and
increase agricultural productivity and food security across the highlands of Ethiopia.

2 Materials and methods
2.1 The study area

The Ethiopian highlands are situated in the Horn of Africa between 3.10°N and
14.65°N, and 34.52°E and 43.36°E. They are defined by elevations ranging from 1500
to 4620 m above sea level (asl) (IFPRI & CSA, 2006). The area under this zone covers
37,710,846 ha, which is about 33% of the total land area of Ethiopia (Fig. 2). In Ethio-
pia, 33 different agroclimatic zones are defined (Dinku et al., 2014a, 2014b; MoARD,
2005), by overlaying elevation, length of growing period and thermal zones, following
the FAO (1996) guidelines for agroecological zoning. The length of growing period and
thermal zones was defined based on gridded mean monthly temperature, rainfall and
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Fig.2 Agroclimatic zones (a) and land uses/covers (b) across the highlands of Ethiopia

evapotranspiration data at 4 km resolution from 1983 to 2017, using data from nearly
300 meteorological stations and the MODIS land surface satellite data (Dinku et al.,
2018). Elevation, length of growing period and thermal class layers were overlaid and
combined spatially in a geographical information system environment to establish the
agroclimatic zones at elevations over 1500 m asl. Based on this operation, 26 agrocli-
matic zones were defined in the highlands of Ethiopia. We reclassified them into 15
zones (Fig. 2a) by merging 11 zones (each zone with less than 0.3% area of the high-
lands of Ethiopia) with zones which do not have significant differences in annual rain-
fall and temperature distribution. While each of the cool, cold and very cold agrocli-
matic zones was subdivided into four subzones of moist, submoist, subhumid and humid
(MoARD, 2005), we merged the subzones of each zone and defined them as cool sub-
moist—humid, cold submoist—-humid and very cold submoist-humid zones, respectively.
The cool semiarid zone was merged with the tepid semiarid zone, and the warm per-
humid zone was merged with the warm subhumid zone. The three major agroclimatic
zones were tepid moist (28.06%), tepid subhumid (14.48%) and warm moist (10.13%).
Minor agroclimatic zones were very cold submoist-humid (0.18%), tepid perhumid
(0.63%) and cold submoist-humid (0.75%).

The land cover of the highlands of Ethiopia was classified by Kassawmar et al., (2018a,
b) using Landsat 30-m satellite image analyses for the period between 1986 and 2016, fol-
lowing the approach used by Anderson et al. (1976) and Loveland et al. (2000), adjusted
for the Ethiopian highlands. The classification scheme produced 12 major classes based on
a total 4380 validation points (Kassawmar et al., 2018a). We reclassified them into seven
land-use/land-cover classes (Fig. 2b) by merging shrubland, woodland and bush lands into
a single “shrub—wood-bush land” class, natural forest and plantation forest into a single
“forest” class and private and state cultivated lands into a single “cultivation” class. Water
bodies were excluded from the analysis. The largest land cover is cultivation (55.15%) fol-
lowed by shrub—wood—bush land (19.72%), forest (12.35%) and grassland (11.32%), while
the smallest land cover is barren land (0.24%) followed by swamps (0.28%) (Fig. 2b). Land
use was differently distributed amongst agroclimatic zones, with cultivation dominating the
cool moist, tepid moist and tepid perhumid zones (over 61% of the total area of each),
forests dominating the tepid subhumid (70.59%) and tepid humid (58.50%) zones, and
shrub-wood-bush lands dominating the warm submoist zones (43.98%). Cultivated and
forest lands occurred in all agroclimatic zones.
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2.2 Characterization of the variation of soil organic carbon stocks as related
to the variation of biophysical variables

Because direct survey measurements of SOC stocks at regional scale do not exist in the
highlands of Ethiopia, eight biophysical predictors (clay content, soil pH, soil moisture,
rainfall, temperature, potential evapotranspiration (PET), land use and altitude) were used
to characterize the current spatial distribution of SOC stocks. Each of these biophysical
predictors was classified into five to ten classes. The mean SOC stock for each class of each
biophysical variable along with the agroclimatic zone classes was calculated and assigned
to the corresponding land-use classes, and the spatial distribution of the current SOC stock
in the top 0-20 cm of soil was mapped. The total SOC stock, SOC,; (1), is calculated using
Eq. 1.

N n
SOC = Z ZAi,k X SOC; )]
k=i i=1

where N is the total number of agroclimatic zones, 7 is the total number of land-use types
in each agroclimatic zone, and A;, is the area (ha) and SOC; is the SOC stock (t ha™!) of
land-use type i (ha) in agroclimatic zone k. Inferential statistics were analyzed using statis-
tical package for social sciences (SPSS) version 20. A one-way ANOVA was used to test
whether the differences in the mean SOC stocks of the biophysical variables were signifi-
cant or not at P<0.05 level. In order to quantitatively understand the factors that control
the spatial variability of SOC stocks, we used multiple linear regression model (Abegaz
et al., 2016; John et al., 2020; Meersmans et al., 2008; Wang et al., 2018) using the eight
biophysical predictors listed above as.

SOCx =0+ X + /X, +... + B,X, 2)

where SOC;x is the predicted SOC stock, X,,X,, ...X, are predictor variables, f,,0,, ...5,
are the coefficients of predictor variables X,,X,, ...X,,, respectively, and d is a constant. An
F-test was used to test whether the coefficients of the multiple linear regression model were
significantly different from zero or not at P <0.05 level.

2.3 Modeling and mapping soil organic carbon sequestration attainable
following 20 and 50 years of improved land management

2.3.1 Model selection

There are several types of process-based SOC models that can be used to estimate the SOC
stock (a list of about 30 models can be found in Falloon and Smith (2009)). Table 1 pre-
sents the comparative features, advantages and disadvantages of some of the widely used
process-based models, including RothC. Since our study focuses specifically on SOC
dynamics, the RothC model was selected as it is able to do these simulations with lower
data requirements (Table 1).

The RothC model was developed using experimentally derived biophysical variables
and has been widely used over the last 20 years using field measurements in a wide range
of countries, including Ethiopia (e.g. Abegaz et al., 2016; Setia et al.,, 2011a, 2011b;
Shahzad et al., 2017; Smith et al., 1997a, 1997b). It has also been applied at catchment,
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regional and global scale using data obtained from digital databases (e.g.; Gottschalk et al.,
2010, 2012; Schroter et al., 2005; Setia et al., 2012, 2013; Smith et al., 2000a, b, 1998).

The performance of RothC has also been evaluated, and its robustness has been con-
firmed by comparing modeled and long-term measured changes in SOC (e.g. Husniev
et al., 2020; Cagnarini et al., 2019; Gomes et al., 2019; Morais et al., 2019; Begum et al.,
2017; Wang et al., 2017a; Wang et al., 2016; Gottschalk et al., 2012; Baranc¢ikova et al.,
2010; Guo et al., 2007; Smith et al., 2005; and Falloon & Smith, 2002). Abegaz et al.
(2016) also evaluated the RothC model in the highlands of Ethiopia by comparing its out-
puts with those produced by the Wolf model (Wolf et al., 1989). The evaluations presented
in these studies suggest that RothC is suitable for prediction of SOC dynamics under a
wide range of soil and agricultural management systems. Therefore, in this study we used
the existing tested RothC model, without modification, for scenario prediction across the
highlands of Ethiopia.

2.3.2 Data used for model initialization

The RothC model was initialized for each of the seven land uses and 15 agroclimatic zones
across the highlands of Ethiopia using (i) measured SOC stock and soil physical param-
eters (percent clay content, pH, salinity, volumetric moisture at field capacity (FC) and per-
manent wilting point (PWP)) for the top 0-20 cm of soil from the ISRIC SoilGrids250 m
database (Hengl et al., 2017) and ii) gridded weather data at 4 km resolution from 1983 to
2017 (mean monthly and mean annual rainfall, air temperature and PET) provided by the
ENACTS tool of Ethiopia’s National Meteorological Agency (NMA) (Dinku et al., 2018).
These gridded data were prepared by blending data from nearly 300 meteorological sta-
tions and the MODIS land surface temperature satellite (Dinku et al., 2018). The study
was restricted to the top 0-20 cm soil depth (Aberal et al. 2021; Abegaz et al., 2016, 2020;
Végen et al. 2013).

2.3.3 Description of soil organic matter pools and determination of initial pool sizes

RothC is a simple five-pool model, of which four pools are active compartments that are
assumed to decompose by first-order processes (Jenkinson et al., 1987, 1992). These active
pools are described as fresh plant material that is decomposable (DPM) or resistant (RPM)
to decomposition, and decomposed organic matter that is active microbial biomass (BIO)
or stabilized humus (HUM) (Jenkinson et al., 1987, 1992). The fifth pool is assumed to
be resistant to decomposition and is referred to as inert organic matter (IOM) (Falloon &
Smith, 2009). The rate constants of the active pools, &, are 10.0 y_1 (DPM), 0.3 y_1 (RPM),
0.66 y~! (BIO), and 0.02 y_1 (HUM) (Jenkinson et al., 1987, 1992). The size of IOM pool,
Ciom (t ha™), was estimated from the measured total SOC using the Falloon equation (Fal-
loon et al., 1998) as

Ciom = 0.049 x C1139 3)

meas

where C,,., is the measured SOC (t ha™").

Computational procedures for the active pools, their relative proportions and the distri-
bution of the annual plant C inputs through the year can be found in Abegaz et al. (2016),
Smith et al., (2005, 2014). The size of C inputs as DPM and RPM for arable lands, grass-
lands, forests/alpine vegetation, bush—-wood—shrub lands and swamps are defined based

on the default values provided by Coleman et al. (1997). The C inputs of extra organic
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amendments (cattle manure and compost) as DPM and HUM are defined as given by
Smith et al. (2014) using a DPM: HUM ratio of 31.45; this estimates a minimum rate of
C sequestration because the decomposable component of the organic inputs is high. The
DPM and RPM decompose to produce BIO, HUM and CO,, and then, the BIO and HUM
pools further decompose to BIO, HUM and CO, (Smith et al., 2014). The monthly rate of
decomposition in each pool is modified by the rate modifying factors of temperature (a),
moisture content (b), pH (¢) and salinity (d) of the soil, plant cover (e) and the decomposi-
tion rate constant (k/12) (Eq. 4). Computational details for each rate modifier can be found
in Smith et al. (2014) and Falloon and Smith (2009). The amount of SOC (t ha™!) of each
of the four active pools (DPM, RPM, BIO and HUM) at the end of the month is estimated
as described by Coleman and Jenkinson (1996) as

_ —abcdek /12
Cend - Cstart X e ek (4)

where C,,4 is SOC in the pool at the end of the month and C,,, is SOC in the pool at the
beginning of a month, both in t ha™'. The sum of these pools gives the total active SOC.

2.3.4 Contextual improved land management and organic inputs

In this study, five improved land management practices were considered (Fig. 3 and
Table 2). These practices are derived from Fig. 2b and the National Atlas of the Forest
Sector Development Program of Ethiopia (MEFCC, 2016, 2018). The first improved land
management practice was conservation tillage; this was used for two scenarios. Scenario 1

Jf)l E M)I‘E lﬁl'E SDI E
z Legend z
° N\ o Land-uses/covers under improved management practices ®
T 7 ™\ I Protection
\‘\\ - Reforestation

[:] More productive,deep rooted grass species & controlled soil erosion
I conservation tilage-50 or conservation tillage-80

| M Afforestation

10°N

5°N

>z

95
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10°N
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T
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T
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Fig.3 Improved land managements used in the long-term simulation of SOC stock sequestration across the

highlands of Ethiopia
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Modeling long-term attainable soil organic carbon sequestration...

involves use of 50% crop residues in combination with the use of improved crop varieties,
crop rotation, controlled soil erosion and 50% of the available manure applied on all cur-
rently cultivated lands; this was defined as “conservation tillage-50". Scenario 2 involves
use of 50% crop residues in combination with the use of improved crop varieties, crop rota-
tion, controlled soil erosion and 80% of the available manure; this was defined as “conser-
vation tillage-80”. The annual dry matter manure production in the highlands of Ethiopia
was estimated from the livestock database of Ethiopian Central Statistical Agency (CSA,
[CSA 2018]), and organic C inputs to the soil from manure were estimated by assuming
annual dry matter manure production of 1.8 t per year per head of cattle, and 55% C con-
tent of the dry matter content of the manure (Snijders et al., 2013).

Data on improved crop varieties and grain yields in the highlands of Ethiopia were
collected from the Crop Varieties Register of the Ministry of Agriculture and Livestock
Resources (MALR, [MALR 2017]). It was estimated from the harvest index and shoot/
root ratio that on average 50% of the plant dry matter was input to the soil as crop residues,
roots and root exudates (Dubey & Lal, 2009; Gelaw et al., 2014; Poeplau, 2016), respec-
tively. About 50% of the crop residues were assumed to be collected from the fields for
use as livestock feed and for other household uses. In crop rotation, three to six improved
crop varieties were considered based on their agroclimatic growth requirements (MALR
2017) (see Table 2 footnote). Descriptions of the current land-use management practices
and improved practices are presented in Table 2.

2.3.5 Prediction of long-term attainable soil organic carbon sequestration

There were 79 land-cover/agroclimatic zone combinations (barren lands in 6 zones, swamps
in 7 zones, alpine vegetation in 10 zones, grasslands in 13 zones, shrub—wood—-bushlands
in 13 zones, cultivated lands in 15 zones, and forests in 15 zones). Out of these, 24 land-
cover types (forests, shrub—wood-bushlands, alpine vegetation and swamps in agroclimatic
zones 8, 5, 7, and 4) were set for protection and so remained unchanged. The RothC model
was used to explore the long-term dynamics of SOC sequestration for 55 land-cover types
under the proposed improved management options (Fig. 3; Table 2). Two simulation peri-
ods were used: (i) 20 years (2021-2041) and (ii) 50 years (2021-2071). For each land use
along with agroclimatic zone, net change in SOC stock (ASOC,,) with application of
improved land management is calculated using Eq. 5 and mapped for 2041 and 2071.

ASOCstock = SOCend - SOCstarl (5)

where SOC,,, is total SOC stock at the end of 2041 or 2071 and SOC,,, is the total SOC
stock at the beginning of 2021, both in t ha~!. Finally, the results were cumulated for the
whole of the highlands of Ethiopia to estimate net gain or loss of SOC for the two periods.
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3 Results and discussion
3.1 Current soil organic carbon stocks as related to variation in biophysical factors

3.1.1 Soil organic carbon stock variation as related to variation of clay content, pH
and soil moisture

Figure 4 shows the variation in the mean stock of SOC as related to biophysical factors
across the highlands of Ethiopia. Clay content ranged from 10 to 60% (Fig. 4a). The stock
in soils of 10-15% clay content was the lowest (44.2 (+standard error of 0.43) t ha™h),
and it increased to 93.4 (+0.05) t ha™! with increasing clay content up to 35%, and then,
it gradually declined to 68.7 (+0. 47) t ha™! at 55-60% clay contents. The variation in C
stock along classes of clay fraction was significant (P <0.001). This implies that in soils
with higher clay content, the decomposition rates of SOC are lower and so they have the
capacity to accumulate more soil C than soils with lower clay contents (Zhong et al., 2018;
Xiao, 2015; Feng et al., 2013; Follett et al., 2012; Giardina et al., 2001). The decline in soil
C above 35% clay may be due to the dominance of Nitisols in the highlands of Ethiopia
which contain>30% clay content (Elias, 2016) but with weak binding to organic matter
(Wattel-Koekkoek, 2002). Consistent with our result, Wang et al. (2017b) have reported
a negative association between soil C accumulation and soil clay fraction in soils with a
higher SOC content.

The SOC stock in soils of pH 4-5 was the highest (110.5 (+0.34) t ha™!) and gradu-
ally declined to 47.0 (+0.14) t ha™' with increasing pH up to 9 (Fig. 4b). The variation
in C stock with soil pH class was significant (P <0.001). Similarly, Zhou et al. (2019)
and Dan et al. (2016) reported an inverse relationship between soil C accumulation and
soil pH. This inverse relationship is due to the reduced activity of soil microorganisms
at low pH as well as the increased solubility of soil organic matter with reduced bond-
ing between the organic constituents and clays at above pH 6 (Andersson et al., 2000; Cur-
tin et al., 2016; Neina, 2019).

The C stock was lowest in soils with soil moisture content at field capacity (FC) of
25-29% (C stock 50.8 (+0.04) t ha™"). This increased to 91.1 (+0.03) t ha~! with increas-
ing FC up to 40% and then declined to 88.4 (+0.13) t ha™!' as FC increased to 40—45%
(Fig. 4c¢). The variation in C stock with soil moisture at FC was significant (P <0.05). This
is in agreement with the findings of Manns et al. (2016) and Franzluebbers (2002) who
reported a direct positive linear relationship between soil water-holding capacity and SOC
stock for a wide range of locations. The decline in soil C stock above 40% FC may be
due to increased rate of soil C decomposition because of increased soil moisture accompa-
nied by high temperatures that facilitate increased microbial activity (Jobbagy & Jackson,
2000).

3.1.2 Change in soil organic carbon stock with rainfall, temperature, potential
evapotranspiration and altitude

Annual rainfall in the study area ranged from 400 to 2300 mm (Fig. 4d). The mean C stock
in soils with 400—700 mm rainfall was the lowest (54.3 (+0.04) t ha™!) and showed a sig-
nificant (P <0.01) linear increase to 110.0 (+0.16) t ha~' with an increasing annual rain-
fall. The wide range of annual rainfall greatly influenced the soil moisture and hydrological
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processes (Heisler & Weltzin, 2006), which in turn governed the dynamics of SOC stocks
(Chen et al., 2016; Gomes et al., 2019). Rainfall influences SOC stocks in two ways; firstly,
high rainfall increases the quantity of C inputs from plants to soils and secondly higher soil
moisture content increases the decomposition rates of those C inputs and SOC.

The mean C stock was highest in areas with a mean annual temperature of §-11 °C
(122.1 (+0.11) t ha™") and decreased linearly to 72.0 (£0.05) t ha™! with an increasing
annual temperature up to a temperature class of 20-23 °C. Mean C stock then increased
to 90.8 («1.15) t ha~! at temperatures between 26 and 29 °C (Fig. 4E). The variation in C
stock with annual temperature was significant (P <0.001). The trend below 23 °C is con-
sistent with other studies that suggest SOC stock decreases with increasing temperatures
(Gomes et al., 2019; Jobbagy & Jackson, 2000; Sheikh et al., 2009) due to increased micro-
bial activity with increasing temperature (Dan et al., 2016), with a rate of decomposition
that approximately doubles with every 10 °C increase in temperature (Schlesinger, 2000).
Above 26 °C, the rate of decomposition may slow due to it being too hot and/or dry for the
microorganisms to function (Moyano et al., 2013).

The mean C stock was the highest in areas with 1000-1200 mm PET (121.8 (+0.14)
t ha™!), decreasing approximately linearly to 73.4 (£0.09) t ha™! with increasing annual
PET up to 1800-2000 mm class (Fig. 4F). There was a significant relationship between C
stock along and annual PET (P <0.001). Some studies have reported that in semiarid envi-
ronments, water loss is dominated by evapotranspiration, which subsequently limits bio-
mass productivity (Kurc & Small, 2004; Lu et al., 2011) and microbial function (Moyano
et al., 2013). Therefore, since rainfall events in many parts of the highlands of Ethiopia
are erratic and concentrated in only three to four months each year, higher rates of PET
in barren lands, grasslands and cultivated lands (Fig. 2b), that prevail in warm and tepid
zones (Fig. 2a), might limit biomass productivity and the functioning of microorganisms
and hence reduce the stock of SOC.

The mean C stock was lowest in soils at 1500-1900 m asl (71.8 (+0.02) t ha™"), increas-
ing approximately linearly to 131.0 (+0.18) t ha™! with increasing altitude up to 3900 m
asl (Fig. 4g). This is in agreement with the findings of Garten et al. (1999), Tate (1992) and
Sims and Nielsen (1986). The variation in C stock along classes of altitude was significant
(P<0.001).

3.2 Soil organic carbon stock variation as related to agroclimatic zones and land
uses

The spatial variation in mean C stock in the top 0-20 cm soil depth ranges from 44 to
142 t ha™!, generally increasing from the north to south and southwest, and from east to
the southwest (Fig. 5); this follows the rainfall gradient and perhaps also the vegetation
cover (Fig. 2b). Only ~0.36% of the highlands of Ethiopia had C stocks between 132 and
142 t ha™!, while 26, 22 and 18% of the area had C stocks between 77 and 87, 88 and 98,
and 66 and 76 t ha™!, respectively (Fig. 5). The total SOC stock in the top 0-20 cm soil
was ~3,089,867,050 t (which is equivalent to~82.94 t ha™h.

The mean C stock in the 0-20 cm soil depth showed significant variation with agrocli-
matic zone (P <0.001), ranging from 47.1 (+0.08) t ha™! in warm semiarid-arid to 137.5
(+0.25) t ha™! in cold submoist-humid (Fig. 5). The C stock per unit area in the cold sub-
moist-humid zone was 2.9 times higher than that in the warm semiarid-arid zone. The high
stock in the cold submoist-humid zone may be due to lower soil pH, higher FC, lower PET
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Fig.5 Spatial distribution of SOC stock t ha™! in the top 0~20 cm soil depth across the highlands of Ethio-
pia

(data not shown), more recalcitrant organic inputs and very cold temperatures that limit the
decomposition rate of organic inputs.

The mean C stock varied with land use from 48.7 (+0.31) t ha™! in barren lands to
102.3 (+0.23) t ha™! in alpine vegetation, and the difference between land uses was sig-
nificant (P <0.001). The mean SOC stock per unit area in alpine vegetation and forest soils
was 2.1 and 1.9 times higher than in barren lands, respectively. The mean C stock was
highest in alpine vegetation, probably due to the cool climate and the more recalcitrant
organic inputs of alpine vegetation. Similarly, the higher mean C stocks in forest soils may
be due to the higher FC and annual rainfall (data not shown), lower soil pH and the dense
vegetation cover that results in higher inputs of litter C to the soil (Sheikh et al., 2009).

3.3 Determinants of dynamics of SOC stock

Among the eight explanatory variables used, land use, agroclimatic zone/elevation, per-
cent clay, annual rainfall and moisture content at FC had a significant positive impact on
the SOC stock (P <0.001), while soil pH, mean annual temperature and annual PET had a
significant negative impact (Table 3). Of the variables with a positive impact, the effect of
land use was the strongest with a change in SOC stock of 2.80 (+0.01) t ha™! (unstandard-
ized coefficient) per unit change in the explanatory variable, followed by agroclimatic zone
(1.71£0.009 t ha™!). Of the variables with a negative impact, the effect of soil pH was
the strongest with an unstandardized coefficient of —15.5 (+0.05) t ha~!. The coefficient
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of determination of the model indicates that 60.6% of the C stock variation was explained
by these eight variables; the 39.4% unexplained variation is due to other biophysical and
socioeconomic factors that are not considered in this analysis. The multiple linear regres-
sion model that describes the mean SOC stock across the highlands of Ethiopia, SOCy, (t
ha™'), is as given by

C

stocl

x = 169.6 +2.80LU + 1.72AC + 1.22FC + 0.321Cl 4+ 0.004R — 15.5pH — 0.43T — 0.029PET

(6)
where LU is the land-use class (barren land=1; grassland=2; cultivated land=3;
shrub—wood-bush land=4; swamps =5; forest=6; and alpine vegetation=7); AC is the
agroclimatic zone (see Table 3 footnote); FC is the field capacity (vol%); CI is the clay
content (%); R is the mean annual rainfall (mm); pH is the soil pH; T is the mean annual
temperature (°C); and PET is the annual PET (mm).

3.4 Long-term dynamics of attainable soil organic carbon sequestration
under improved land managements

3.4.1 Dynamics of attainable soil organic carbon sequestration by agroclimatic zone

Predicted long-term dynamics of SOC stocks are discussed here according to improved
land-use management categories and agroclimatic zones (Fig. 6). The change in SOC
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Fig.6 Rates of SOC sequestration after 20 years (a) and 50 years (b) of improved land management (with
50% manure input in cultivated lands), and after 20 years (c) and 50 years (d) of improved land manage-
ment (with 80% manure input in cultivated lands) across the highlands of Ethiopia
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after 20 years of improved land-use management ranged from -20 t ha™' with conserva-
tion tillage-50 in the tepid perhumid zone to+24 t ha~! in grassland soils in the cool sub-
moist—perhumid zone (Fig. 6a). Loss of SOC was observed in soils with higher C stocks
and higher annual rainfall and temperature (data not shown) due to higher rates of C miner-
alization, associated with the high soil moisture contents and temperatures. Similar results
have been documented by Wang et al. (2017a), with higher inputs of C required in these
zones to reverse the loss of SOC (Wang et al., 2017a). In the first 20 years of conserva-
tion tillage in cultivated land, the loss in the tepid perhumid zone was reduced from —20
t ha™! (for conservation tillage-50) to —15 t ha™! (for conservation tillage-80) (Fig. 6¢);
increasing manure input from 50 to 80% resulted in a 25% reduction in the rate of C loss.
The change in C stocks after 50 years of improved management ranged from -30 t ha™' for
conservation tillage-50 in the tepid perhumid zone to+39 t ha™! for grassland in the cool
submoist—perhumid zone (Fig. 6b). For the same period, with conservation tillage, SOC
loss was reduced from —30 t ha™' (for conservation tillage-50) to —25 t ha~! (for conserva-
tion tillage-80) in the tepid perhumid zone (Fig. 6d).

The changes in SOC stocks remained negative under both conservation tillage-50 and
tillage-80 in cultivated lands of tepid perhumid, tepid humid, tepid subhumid and warm
subhumid zones, as well as in the grasslands of the tepid humid, tepid subhumid and warm
subhumid zones (Table 4). The loss in these zones is again likely to be due to the low rates
of C inputs compared to the high C losses associated with the high annual rainfall and
temperatures (Follett et al., 2012). In other zones, 50 years of improved land management
with conservation tillage-80 increased C stocks by between 1.7 t ha™! in warm moist zone
and 22.4 t ha™! in the very cold submoist-humid zone (Table 4). This is similar to the esti-
mation of Wang et al. (2017a) who reported that the annual rate of SOC sequestration in
croplands with 60% crop residue retention was 0.45 t ha=! y=.

3.4.2 Dynamics of attainable soil organic carbon sequestration by improved land
management

The total afforested area of barren land was 90,919 ha. The initial mean SOC stock in bar-
ren lands ranged from 44 t ha™' in tepid semiarid to 55 t ha™" in tepid moist zones. After
20 years of afforestation, increased C stocks ranged from 1.14 t ha™! (2%) in warm moist
zone to 11.94 t ha™' (27%) in tepid semiarid zone. After 50 years, the stock increase ranged
from 7.5 t ha™! (14%) in warm moist zone to 17.54 t ha™! (40%) in tepid semiarid zone.
The rate of increase was highest in the first 20 years; ranging from 0.06 t ha™' y~! in warm
moist zone to 0.60 t ha™! y~! in tepid semiarid zone, compared to the rates ranging from
0.04 to 0.20 t ha™! y_l, and 0.03 to 0.16 for the period between 20 and 40, and 40 and
50 years, respectively (Fig. 7a). After 20 and 50 years of afforested land, the total amounts
of SOC sequestered were 553,989 t (6.09 t ha‘l) and 911,722 t (10.03 t ha™'; Table 4),
respectively.

While the total land area of cultivation in the highlands of Ethiopia was 20,796,518 ha,
the initial SOC stocks of 62% of this land were relatively low, ranging from 51 t ha™' in
warm semiarid—arid to 81 t ha™! in tepid moist zone. This low rate of C stock is due to use
of over 80% of crop residues and cattle dung for household energy in the highlands of Ethi-
opia at the expense of crop residue and manure application to farmlands (Gudina & Non-
hebel, 2015; Gwavuya et al., 2012; Negash et al., 2017). From these results, we concluded
that the business-as-usual system should not continue. The availability of crop residues
and manures for soil amendment could be increased by using alternative energy sources
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that do not burn dung and crop residues, such as biogas digesters, solar, wind energy and
electrification; electrification will be provided by the Ethiopian Grand Renaissances Dam
that will soon start supplying hydroelectric power to both the rural and urban population of
Ethiopia.

After 20 years of conservation tillage-50, SOC continued to decline in six zones
(Fig. 7¢), ranging from a total of 0.80 t ha-1 (0.9%) in cool moist to 17.49 t ha-1 (16%) in
tepid perhumid. In nine zones, C sequestered ranged from 0.17 (0.2%) in tepid moist zone
t0 5.79 t ha™! (7%) in warm moist zone (Fig. 7c). After 50 years of conservation tillage-50,
SOC declined in only five zones, ranging from a total of 2.46 t ha-1 (3.7%) in warm moist
zone to 27.45 t ha-1 (24.36%) in tepid perhumid zone. In ten zones, the C sequestered
ranged from 0.89 t ha-1 (0.97%) in cool moist to 11.20 t ha-1 (20.63%) in warm submoist
zone.
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For conservation tillage-80, SOC continued to decline after 20 years only in four zones
(Fig. 7d), ranging from a total of 2.32 t ha™' (2.5%) in tepid subhumid zone to 15.06 t ha™'
(13.36%) in tepid perhumid zone. In 11 zones, SOC increased, ranging from 0.11 t ha™!
(0.15%) in warm moist to 8.33 t ha™' (15.35%) in warm submoist zone. After 50 years,
the decline in the three zones ranged from 1.15 t ha~! (1.25%) in warm subhumid to 22.67
t ha™! (20.11%) in tepid perhumid zone, whereas in the other 11 zones, C sequestration
ranged from 6.78 t ha™! (7.43%) in cool moist to 16.36 t ha™' (31.13%) in warm submoist
zone.

Over the whole area of cultivated lands, after 20 years of conservation tillage-50, SOC
stocks declined by 20,382,891 t (0.98 t ha_l) from the initial stock, but after the longer
50-year period the initial C stocks increased by 3,753,524 t (0.18 t ha™!, Table 4). This
result is consistent with a result of Husniev et al. (2020), who reported a decline SOC
stocks in a 60-year period with an annual input of 1.9 t C ha~!. For conservation till-
age-80, SOC stocks were already increasing after 20 years by 32,040,507 t (1.54 t ha™")
and increasing to 112,349,160 t (5.40 t ha™!) after 50 years (Table 4). For both conserva-
tion tillage-50 and tillage-80, the annual rates of change were highest in the first 20 years
compared to the period between 20 and 40, and 40 and 50 years (Figs. 7c and d).

The total land area of grassland was 4,270,034 ha. The initial SOC stocks were much
higher than in the cultivated land, ranging from 48 t ha™' in warm semiarid-arid to 107 t
ha~! in tepid perhumid zone. After 20 years of improved grassland management, the SOC
stocks declined in only three zones; 6.98 t ha™! (9%) in warm subhumid, 12.22 t ha=! (12%)
in tepid humid and 15.05 t ha™"' (14%) in tepid perhumid zones (Fig. 7e). After 50 years,
loss of SOC continued in the same zones; 10.92 t ha™! (14%) in warm subhumid, 19.18 t
ha™! (19%) in tepid humid, and 23.63 t ha™! (22%) in tepid perhumid zones. In the remain-
ing eight zones with grasslands, improved grassland management resulted in an increased
C stock. After 20 years, the increases ranged from 1.30 t ha™' (1%) in warm humid to 20.49
t ha™! (20%) in cool submoist—perhumid. After 50 years, the increases were between 2.03
t ha™' (2%) in the warm humid and 34.49 t ha™! (34%) in the cool submoist—perhumid
zones. Over the whole area of grasslands, the amount of SOC sequestrated was 7,786,302
t (1.82 t ha™') after 20 years and 12,446,337 t (291t ha~! after 50 years of improved man-
agement (Table 4).

The total reforested area of degraded forests, alpine vegetation, shrub—wood-bush
land and swamps was 6,380,380 ha. After 20 years of reforestation of this area, the rate
of soil C stock increase ranged from 1.80 t ha™ in tepid moist to 12.40 t ha™' in cold sub-
moist-humid zones (Fig. 7b). The rates of increase after 50 years ranged from 2.70 (4%)
in tepid moist to 21.68 (21%) t ha™! in cold submoist—humid zones. After 20 and 50 years
of reforestation, the absolute rates of soil C sequestration were 26,094,121 t (4.09 t ha_l)
and 43,474,955t (6.81 t ha™'; Table 4), respectively. Similarly to afforested and cultivated
lands, the rates of change in SOC stocks were higher in the first 20 years compared to the
period between 20 and 40 and 40 and 50 years in soils of improved grasslands (Fig. 7¢) and
reforested lands (Fig. 7b).

In six agroclimatic zones (in tepid subhumid, tepid humid, tepid perhumid, warm moist,
warm subhumid and warm humid), areas under forest, shrub-wood—bush, alpine vegeta-
tion and swamps, with a total area of 6,172,995 ha, are recommended for protection and
conservation, because they are natural ecosystems and are identified as least priority for
tree-based landscape restoration by MEFCC (MEFCC, 2018). Therefore, soil C stocks in
these areas were assumed to remain unchanged.

Over the whole area and all land uses, after 20 years of improved land management, the
regional SOC sequestration was 14,051,321 t using conservation tillage-50 and 32,040,507
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t using conservation tillage-80 on the cultivated land. After 50 years, this increased to
60,586,539 t and 169,182,174 t (Table 4), equivalent to an increase from current stocks
by 2.9% (0.06% y~') and 5.5% (0.11% y~"), respectively. Total SOC sequestration after
50 years of improved land management was 2.8 times higher with conservation tillage-80
than with conservation tillage-50. This information is important for communicating the
value of different management practices to stakeholders and for planning management
for soil C conservation and sequestration, and greenhouse gas emission reduction (World
Bank, 2012).

3.4.3 Uncertainties and limitations

In this study, at least four uncertainties and limitations may arise around the model inputs,
parameters and subsequently model predictions (Barancikova et al., 2010). The first uncer-
tainty is associated with the climatic change. We used the current climatic data for SOC
prediction. However, increasing temperatures will speed up the decomposition of SOC
in the future (Smith et al., 2005). The second uncertainty is the estimated C inputs from
plant residues and manures. While increased SOC stocks and adoption of crop rotations
are expected to increase soil fertility and agricultural biomass, model C input is estimated
from yield of the current improved crop varieties and manures are estimated from the cur-
rent livestock numbers. This may underestimate future C inputs to the soil and rates of C
sequestration. The third uncertainty is in the DPM and HUM ratio used for cattle manure
in the model. While recommended ratios for DPM: HUM in cattle manure ranged from
0.07 to 31.45 (Smith et al., 2014), we used the highest value (31.45) in order to estimate
the minimum likely rate of C sequestration. The fourth uncertainty is the use of mean ini-
tial SOC stock from heterogeneity of local landforms from which heterogeneity of SOC
can be observed.

4 Conclusion and recommendation

This study characterized the association between the spatial distribution of the SOC stock
and eight biophysical predictors (clay content, soil pH, soil moisture, rainfall, tempera-
ture, PET, land use and altitude). The study also modeled and mapped SOC sequestra-
tion attainable following 20 (2021-2041) and 50 (2021-2071) years of five improved land
management practices. The results of this study revealed that, over the whole area and
all land uses of the highlands of Ethiopia, the total SOC stock in the top 0-20 cm soil
was ~3,089,867,050 t (~82.94 t ha‘l). The difference in SOC stocks with biophysical vari-
ables, agroclimatic zones and land uses was significant (P <0.001) (Fig. 4). Multiple linear
regression revealed that the impact of changes in land use, agroclimatic zone, rainfall, clay
content and FC on SOC stock change was positive and significant (Table 3, P<0.001).
Land use had the strongest positive impact, followed by agroclimatic zone/elevation and
FC. This implies that adoption of improved land management practices should be used to
increase rates of C sequestration.

Initial SOC stocks of barren lands, grasslands, cultivated lands and other degraded land
uses were smaller than stocks of forest and alpine vegetation, suggesting that improved
land management practices in the former land uses are needed for sustainable agricultural
and ecosystem services. This further indicates the need for afforestation in barren lands
and reforestation in degraded forest, shrub—wood-bush land and alpine vegetation. The
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simulated results of this study indicate that the rate of SOC sequestration is the interplay
between initial SOC stocks, the biophysical environment, the rate of organic inputs and
length of management.

After 50 years of conservation tillage-50 in cultivated land, the initial stock declined
in five zones (warm subhumid, warm humid, tepid subhumid, tepid humid and tepid per-
humid) due to the high annual rainfall and temperature, which results in higher rates of
SOC decomposition. Therefore, in order to counter these losses, organic inputs should be
increased. Our simulations revealed that, after 50 years of conservation tillage-80, SOC
sequestration increased by 179% compared to conservation tillage-50. Therefore, in crop-
lands, effective soil C sequestration can be achieved by adopting conservation tillage-80.

Introduction of improved pasture species and controlling soil erosion can lead to
net benefits of C sequestration and mitigation of greenhouse gas emission from grass-
lands of the region. Protection of natural ecosystems of the alpine vegetation, forests,
shrub—wood-bush and swamp should also be included in C loss mitigation measures. The
simulated results of this study indicate the need to adopt improved land management in the
highlands of Ethiopia that lead to increased attainable SOC sequestration and simultane-
ously reduced CO, and greenhouse gas emissions, providing more sustainable agricultural
production and environmental management systems. The results could help to guide man-
agement of carbon inputs across the highlands of Ethiopia to effectively mitigate climate
change. However, we would like to indicate that modeled results are for aggregated land-
use or land-cover classes, which may be too coarse to produce land unit-specific results, as
the highlands of Ethiopia are characterized by highly variable topographic features in each
land use within the same agroclimatic zone. Therefore, a further study that considers topo-
graphic variability is required.
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